
Supplementary tables
Table S1. Classification of Chromatin Regulatory Factors.

Gene name(a) Description Function(b)

Polycomb Repressive Complex 2

EZH2* Catalytic subunit
H3K27me1/me2/me3 HMT. Major role in stem cell identity maintenance. Also methylates 
GATA4. Interacts with DNMTs.

SUZ12 EZH2 coenzyme Required for PRC2 H3K27 HMT activity (1). Interacts with SIRT1.
EED Different isoforms determine PRC3 or PRC4 PRC2 variants.

RBBP4 (RBAP46)*
Required for the association of PRC2 to the histone tail (2). Binds Rb to regulate cell 
proliferation.

RBBP7 (RBAP48)* Interacts with BRCA1 and may regulate cell proliferation and differentiation.
PHF1 (PCL1) Mediates PRC2 intrusion into active H3K36 chromatin regions (3).
PHF19 (PCL3) Mediates interaction of PRC2 with H3K36me3, essential for full PRC2 activity (4).
ASXL1 Associates with PRC2 to promote gene repression (5).
MTF2 (PCL2) Required for PRC2-mediated Hox repression (6).
JARID2 (JMJ)* Essential in embryonic development, inhibits H3K27me3 by PRC2.

YY1*
Interacts with PRC2, and it is required for EZH2-mediated H3K27me3 (7). Also part of 
chromatin remodelling INO80 complex.

SIRT1* Class III HDAC Transiently interacts with PRC2. Histone and protein deacetylase activity.

Polycomb Repressive Complex 1
EZH1 Catalytic subunit H3K27me1/me2/me3 HMT. Less critical for H3K27me3 formation than EZH2.

BAP1
Catalytic component of the PR-DUB complex, that specifically deubiquitinates 
H2AK119ub1.

BMI1 Maintenance of transcriptional repression of key genes during development. H2AK119ub.
RING1 H2AK119ub.
RNF2 (RING1B) H2AK119ub. Acts as the main ub ligase in PRC1.
CBX2
CBX3 Part of PRC1-like complex 4 (8). Binds the nuclear lamina through lamin B receptor.
CBX4
CBX6
CBX7 Promotes H3K9me3. Regulates cellular lifespan by repressing CDKN2A.
CBX8
PCGF1 (NSPC1) BCOR complex Represses CDKN1A expression in a RARE-dependent manner.
PCGF2 (MEL18)
PCGF6 (MBLR)
PHC1
PHC2
PHC3
AEBP2
L3MBTL1 Specifically recognizes me1 and me2 lysines.
Histone deacetylases

HDAC1*

Class I

Controls embryonic stem cell differentiation (but not HDAC2) (9). Modulation of cell 
growth and apoptosis by down-regulation of p53. Also part of NuRD/Mi-2 ATP-dependent 
chromatin remodelling complex.

HDAC2*
Relevant role in haematopoiesis. Also part of NuRD/Mi-2 ATP-dependent chromatin 
remodelling complex.

HDAC3 Modulation of cell growth and apoptosis by down-regulation of p53.
HDAC8
HDAC4

Class Iia
HDAC9 Protects neurons from apoptosis.
HDAC5
HDAC7
HDAC6

Class Iib
HDAC10

SIRT1*
Class III, NAD-
dependent

Interacts with PRC2, non-histone deacetylase activity. Involved in normal ageing through 
resistance to cellular stress. Deacetylates p53. Located in nucleus and cytoplasm (10).

SIRT2 Deacetylates alpha-tubulin. Located in the cytoplasm (10).
SIRT3 Located in the mitochondria (10).
SIRT4



SIRT5
SIRT6 Located in the nucleus (10). H3K9 and H3K56 deacetylase activity.
SIRT7 Located in the nucleus (10).
HDAC11 Class IV
ARID4A Bridging molecule to recruit HDACs.
TBL1XR1 Associates with HDAC3 (11).
NCOR1 Forms complex with HDAC1.

TRIM28 (KAP1)*
Proposed to be a transcriptional repressor. Mediates apoptosis. through degradation of p53 
(12).

Histone acetyltransferases
EP300 Type A, 

CBP/P300 family
Acetylates all four core histones, and non-histone proteins like p53 and MyoD (13).

CREBBP (CBP) Critical role in embryonic development, acetylates both histone and non-histone proteins.
NCOA3

Type A
HAT activity not studied in detail.

BRPF1 (TAF250)
ATF2 Specifically acetylates H2B and H4 in vitro.
KAT6A (MOZ)

Type A, MYST 
family

Component of the MOZ/MORF complex, which has a histone H3 acetyltransferase 
activity.KAT6B (MORF)

KAT5 (TIP60)
KAT8 (MOF)
KAT7 (HBO1) Responsible for the bulk of histone H4 acetylation in vivo.
KAT2A (GCN5) Type A, GNAT 

familyKAT2B (PCAF)
HAT1 Type B
ING4 Facilitates targeting of HBO1-mediated acetylation to H3K4me3 sites (14).
SET HAT inhibitor Promotes apoptosis. Inhibits p300/CBP and PCAF-mediated acetyltransferase.

Histone methyltransferases
ASH1L (ASH1) H3K36 HMT. 
ASH2L H3K4 HMT. Complex with MLL
ATF7IP (MCAF)* Required to stimulate SETDB1 activity, couples H3K9me3 with DNA methylation.
DOT1L (KMT4) H3K79 HMT.
EHMT2 (G9a) H3K9me1/me2, H3K27me HMT.
EHMT1 H3K9me1/me2 HMT.

EZH2*
H3K27me1/me2/me3 HMT. Major role in stem cell identity maintenance. Also methylates 
GATA4. Catalytic subunit of PRC2 complex.

MEN1
H3K4 HMT. Essential component of a MLL/SET1 HMT complex. Represses telomerase 
expression. Role in TGFB1-mediated inhibition of cell-proliferation.

MLL H3K4 HMT. Key regulator of development and haematopoiesis.
MLL2

H3K4 HMT. 
MLL3

MLL4
H3K4 HMT. Required to control the bulk of H3K4me3 during oocyte growth and 
preimplantation.

MLL5 H3K4me1/me2 HMT. Key regulator of haematopoiesis.
NSD1 (KMT3B) H3K36, H4K20 HMT. May influence transcription positively or negatively.
PRDM2 (RIZ1) H3K9 HMT.
PRDM9 H3K4me3 HMT. Essential for meiotic progression.
RBBP5 Complex with MLL.
RTF1 Required for H3K4me3 HMT on stem cell pluripotency genes.
SETD1A (SET1A) H3K4 HMT.
SETD1B (SET1B) H3K4 HMT.
SETD2 (KMT3A) H3K36 HMT.
SETD7 (SET7) H3K4 HMT.
SETD8 (KMT5A) Trimethylates H4K20 (15).
SETDB1 (ESET) H3K9 HMT.
SETDB2 H3K9 HMT.
SMYD1 H3K4 HMT (16).
SMYD2 (KMT3C) H3K4me, H3K36me2 HMT. Also methylates TP53 and RB1.
SMYD3 H3K4me2/me3 HMT.
SUV39H1 (KMT1A)

H3K9me3 HMT, uses H3K9me1 as substrate.
SUV39H2 (KMT1B)
SUV420H1 (KMT5B) H4K20me3 HMT. Key in constitutive heterochromatin formation at pericentormeric 

regions.SUV420H2 (KMT5C)

TRIM28 (KAP1)*
Mediates silencing by recruiting SET1 H3K9me3 HMT and HDAC NuRD complex. 
Mediates apoptosis through degradation of p53 (12).



WDR5 Complex with MLL.
Histone demethylases
KDM1A (LSD1)* H3K4me2/me1, H3K9 HDM, also demethylates and stabilizes DNMT1. 

KDM1B (LSD2)*
H3K4me2/me1 HDM. Required for de novo DNA methylation of a subset of imprinted 
genes during oogenesis.

KDM2A H3K36me2 HDM. Required to maintain heterochromatic state at centromeres.
KDM2B H3K4me3, H3K36me2 HDM. Represses rRNA genes.
KDM3A H3K9me2/me1 HDM.
KDM3B H3K9 HDM.
KDM4A H3K9me3, H3K36me3 HDM.
KDM4B H3K9me3 HDM.
KDM4C H3K9me3, H3K36me3 HDM.
KDM4D H3K9me3/me2 HDM.
KDM5A (RBP2) H3K4me2/me3 HDM. Prominent role in cell differentiation and senescence (17).
KDM5B (PLU1) H3K4me3/me2/me1 HDM.
KDM5C (SMCX) H3K4me3/me2 HDM. Participates in the repression of neuronal genes.
KDM5D (SMCY) H3K4me3/me2 HDM.
KDM6A (UTX)

H3K27me2/me3 HDM. Regulation of HOX gene expression.
KDM6B (JMJD3)
JHDM1D (KDM7A) H3K9me2, H3K27me2, H4K20me1 HDM. Required for brain development.
KDM8 (JMJD5) H3K36me2 HDM. Required for G2/M cell cycle progression.
JMJD1C (TRIP8) H3K9 HDM.
JMJD6 H3R2, H4R3 HDM. Key regulator of haematopoietic differentiation.
PHF2 H3K9me2 HDM.
PHF8 H3K9me1/me2, H3K27me2, H4K20me1 HDM. Key role in cell cycle progression.
UTY H3K27me3/me2/me1 HDM (18).
JARID2 (JMJ)* Essential role in embryonic development, inhibits PRC2 trimethylation of H3K27 (19).
DNA methyltransferases
DNMT1 Maintainins methylation patterns established in development.
DNMT3A Genome-wide de novo methylation, essential for the establishment of DNA methylation 

patterns during development.DNMT3B
DNMT3L Catalytically inactive, but essential for DNMT3A and DNMT3B function.
MECP2

Essential for embryonic development. Specifically bind methylated DNA and repress 
transcription at methylated promoters.

MBD1
MBD2*
MBD4
ATF7IP (MCAF)* Mediates MBD1 transcriptional repression, couples H3K9me3 with DNA methylation.
KDM1A (LSD1)* HDM, also demethylates and stabilizes DNMT1. 

KDM1B (LSD2)*
HDM, required for de novo DNA methylation of a subset of imprinted genes during 
oogenesis.

DNA demethylases
TET1 Converts 5mC to 

5hmC
Putative role in DNA demethylation (20).

TET2
AICDA (AID) May play a role in DNA demethylation.
TDG Essential for DNA demethylation (21).
ATP-dependent chromatin remodelling
SMARCA2 (BRM) SWI/SNF 

complex is 
required for 
transcriptional 
activation of 
genes normally 
repressed by 
chromatin (22).

Catalytic component of SWI/SNIF complex (23).
SMARCA4 (BRG1) Essential for the maintenance of multipotent neural stem cells.
SMARCB1 (BAF47)
SMARCC1
SMARCC2
SMARCD1
SMARCD2
SMARCD3
SMARCE1 (BAF57)
ARID1A
ARID1B (BAF250B)
ARID2 (BAF200) Required for the stability of the SWI/SNF chromatin remodelling complex SWI/SNF-B.

ACTL6A (BAF53A)
Required for maximal SMARCA4 activity and for the association of the SWI/SNF 
complex with chromatin.

ACTL6B (BAF53B)
DPF1 (BAF45B)
DPF2 (BAF45D)



DPF3 (BAF45C)
EP400 Regulates nucleosome stability during DNA repair (24).
PBRM1 Regulator of cell proliferation.
PHF10 (BAF45A) Required for the proliferation of neural progenitors.
MTA1

NuRD/Mi-2 
complex has 
ATP-dependent 
chromatin 
remodelling 
activity and 
HDAC activity

MTA2

MTA3
Maintenance of the normal epithelial architecture through the repression of SNAI1 
transcription in a HDAC-dependent manner.

CHD3 (Mi-2α)
CHD4 (Mi-2β) Main component of the NuRD/Mi-2 complex.
GATAD2A
GATAD2B
HDAC1*
HDAC2*
MBD2* Essential for embryonic development. Also bind methylated DNA.
RBBP4 (RBAP46)*

Also part of PRC2 complex.
RBBP7 (RBAP48)*
INO80 INO80 complex 

has DNA- and 
nucleosome-
activated ATPase 
activity and 
catalyzes ATP-
dependent 
nucleosome 
sliding (25).

TFPT Putative regulatory component of the INO80 complex

YY1* Also interacts with PRC2 and is required for EZH2-mediated H3K27me3 (7).

SMARCA1 (SNF2L)

ISWI complex 
mobilizes 
mononucleosome
s away from 
DNA ends 
without changing 
the arrangement 
of DNA on the 
surface of the 
histone octamer 
(22).

SMARCA5 (SNF2H)
Required for replication of pericentric heterochromatin in S-phase specifically in 
conjunction with BAZ1A.

BAZ1A (ACF1)

BAZ1B (WSTF)
Acts as a mark that distinguishes between apoptotic and repair responses to genotoxic 
stress. Maintenance of chromatin structures during DNA replication processes.

BAZ2A (TIP5)
BPTF Binds H3K4me3.
CHRAC1
POLE3
RSF1
RBBP4 (RBAP46)*

Also part of PRC2 complex.
RBBP7 (RBAP48)*
CHD1 Required for the maintenance of open chromatin and pluripotency in ESC.
CHD2 SNF2-related helicase/ATPase domains.
HNF1A Possible regulation of transcription through chromatin remodelling (26).
IKZF1* Targets NuRD/Mi-2 and SWI/SNF complexes in a single complex.

Global chromatin regulators
LMNA lamin A/C

Global heterochromatic changes induced by lamin perturbation are often mirrored by 
altered levels of chromatin-associated epigenetic histone marks (27).

LMNB1 lamin B1
LMNB2 lamin B2

Other chromatin regulators
BAG6 Complex EP300 p300-mediated p53 acetylation upon DNA damage. May mediate H3K4me2.
ATRX ATRX-DAXX 

complex
Thought to regulate deposition of H3.3 at heterochromatic regions of the genome, 
including telomeres (28).DAXX

MUM1 Opens chromatin to facilitate DNA damage repair (29).

*Genes with more than one function in chromatin remodelling appear more than once in the table.

(a) HGNC HUGO gene names. In parenthesis, common alternative gene names.

(b) Gene function provided by Uniprot, unless otherwise stated.(30)



Table S2. Described oncogenic alterations in Chromatin Regulatory Factors. This is an exhaustive 
compilation of alterations(*) reported in CRFs not included in Table 1. Gene names correspond to HUGO 
HGNC approved symbols. In bold typeface, genes included in the Cancer Gene Census (CGC) (31). ALL: 
Acute Lymphocytic Leukaemia; AML: Acute Myeloid Leukaemia; B-ALL: B Acute Lymphoblastic 
Leukaemia; B-NHL: B-cell non-Hodgkin Lymphoma; CLL: Chronic Lymphocytic Leukaemia; ccOC: Clear 
Cell Ovarian Carcinoma; ccRCC: clear-cell Renal Cell Carcinoma; CMML: Chronic Myelomonocytic 
leukaemia; ESCC: Oesophageal Squamous Cell Carcinoma; FL: Follicular Lymphoma; HCC: Hepatocellular 
Carcinoma; HL: Hodgkin Lymphoma; HNSCC: Head and Neck Squamous Cell Carcinoma; MCL: Mantle 
cell Lymphoma; MDS: Myelodysplastic Syndrome; MSI: Microsatellite instability; NMSC: Non-Melanoma 
Skin Cancer; NSCLC: Non-Small Cell Lung Carcinoma; OSCC: Oral Squamous Cell Carcinoma; RCC: 
Renal Cell Carcinoma; T-ALL: T Acute Lymphoblastic Leukaemia.

*Evidence based solely on cancer cell lines is excluded from this table. Only evidence in human samples 
have been used. Effects of pharmacological inhibition are not included. Germline polymorphisms are 
excluded.

Gene Literature evidence

AEBP2 Deleted in AML (32).

ATF2 Over-expressed in melanoma (33).

BAZ1A Amplified in ESCC (34).
Deleted in papillary type 2 RCC (35).

BMI1 Over-expressed in B-NHL, leukaemia, MCL, medulloblastoma, neuroblastoma, NSCLC (36) and 
prostate tumours (37).

CBX2 Over-expressed in breast cancer (38).

CBX3 Over-expressed in osteosarcoma (39), myxoid liposarcoma, colon, breast, esophageal, cervical, and lung 
tumours (40).

CBX7 Over-expressed in lymphoma (41).
Down-regulated in bladder (42), and aggressive gastric (43), pancreatic (44) and thyroid cancer (45).

CHD1 Mutated in high MSI gastric and colorectal cancers (46).
Deleted in prostate cancer (47).

CREBBP Mutated in AML, ALL, DLBCL, N-NHL (CGC), bladder (48), medulloblastoma (49) and SCLC (50).
LOH in lung (51).

DAXX Mutated in paediatric glioblastoma and neuroendocrine pancreatic tumours (CGC).

Over-expressed in prostate cancer (52).

DNMT1 Over-expressed in AML (53), gliomas (54) and pancreatic tumours (55).

DNMT3B Over-expressed in breast (56), colorectal and stomach (57), prostate cancer (58), advanced stages of 
DLBCL (59).

DNMT3L Over-expressed in testicular embryonal carcinoma (60).
Loss of methylation and consequent over-expression in cervical cancer (61).

EHMT2 Over-expressed in bladder (62), resistant cervical (63) and aggressive lung tumours (64).

EPC1 Mutated in pancreatic cancer (65).

EZH1 Over-expressed and amplified in myeloproliferative neoplasms (66).

EZH2 Mutated in DLBCL (CGC), MDS (67).
Over-expressed in bladder, breast, colon, liver, melanoma and prostate tumours; DLBCL, HL and MCL 
(36).

GATAD2B Deleted in OSCC (68).

HDAC1 Over-expressed in HCC (69).
Down-regulated in aggressive breast tumours (70).

HDAC2 Mutated in colon cancer with microsatellite instability (71).
Over-expressed in gastrointestinal tumours (72), prostate (73), aggressive HCC (74), lung (75), cervical 
(76), ovarian and endometrial endometrioid carcinomas (77).



HDAC3 Over-expressed in gastrointestinal tumours (72), b-cell lymphomas (78) and CLL (79).

HDAC4 Mutated in melanoma (80) and breast cancer (81).
Over-expressed in T-ALL (82) and treatment-resistant ovarian tumours (83).

HDAC5 Over-expressed in B-ALL (82) and aggressive medulloblastoma (84).

HDAC6 Over-expressed in HCC (85), cisplatin-resistant NSCLC (86) and breast tumours with good prognosis 
(87).
Down-regulated in CLL (79).  

HDAC7 Over-expressed in pancreatic adenocarcinoma (88) and aggressive childhood ALL (82).

HDAC8 Over-expressed in aggressive neuroblastoma (89).

HDAC9 Over-expressed in high grade medulloblastoma (84) and childhood ALL with poor prognosis (82).
Amplified in OSCC (68).

HDAC10 Down-regulated in adrenocortical tumours (90), CLL (91) and aggressive NSCLC (92).

HNF1A Mutated in neuroendocrine tumours (93), endometrial cancer (94), high MSI CRC (95) and 
hepatocellular adenoma (96).
Down-regulated in aggressive HCC (97).

IKZF1 Mutated in ALL, DLBCL (CGC).
Deleted in aggressive paediatric B-ALL (98).

ING4 Down-regulated in HNSCC (99), melanoma (100), gastric adenocarcinoma (101), lung tumours (102) 
and colorectal cancer (103).
Deleted in HNSCC (99) and breast tumours (104).

JARID2 Mutated in NSCLC (105).
Deleted in AML (32).

JMJD1C Over-expressed in pancreatic ductal adenocarcinoma (106).

JMJD6 Over-expressed in aggressive breast tumours (107).

KAT5 Down-regulated in gastric cancer (108), aggressive melanoma (109) and advanced colorectal carcinoma 
(110).

KAT6A Translocated in AML (111).

KAT6B Translocated in AML (111) and benign uterine tumours (112).

KAT7 Over-expressed in testicular, breast, ovarian, bladder, oral and oesophageal carcinomas (113).

KAT8 Down-regulated in breast carcinoma and medulloblastoma (114).

KDM1A Over-expressed in NSCLC (115), highly malignant sarcomas (116), bladder (117) and aggressive prostate 
tumours (118).
Down-regulated in breast carcinoma (119).

KDM2A Down-regulated in prostate cancer (120).

KDM2B Over-expressed in ALL, AML (121) and pancreatic ductal adenocarcinoma (106).

KDM3A Over-expressed in prostate cancer (122) and RCC (123).

KDM3B Over-expressed in ALL (124) and prostate cancer (122).

KDM4A Over-expressed in breast (125) and prostate cancer (122).
Down-regulated in bladder tumours (126).

KDM4B Over-expressed in gastric cancer (127).

KDM4C Over-expressed and amplified in breast cancer (128).

KDM5A Mutated in AML (CGC).

Down-regulated in melanoma (129).
Over-expressed in breast tumours with good prognosis (130) and in pancreatic ductal adenocarcinoma 
(106).

KDM5B Over-expressed in breast tumours, prostate cancer (122) and uveal melanoma (131).

KDM6B Over-expressed in HL (132) and pancreatic ductal adenocarcinoma (106).

LMNA Over-expressed in aggressive colorectal cancer (133).
Down-regulated in DLBCL (134), ALL and NHL (135).

LMNB1 Over-expressed in HCC (136) and colorectal tumours (137).

MBD4 Mutated in sporadic colon cancer (138) and HNPCC with MSI (139).



MECP2 Over-expressed in breast tumours (140).

MEN1 Mutated in pancreas, parathyroid (CGC) and in lung carcinoids (141).
MLL-fusion partner in leukaemias (142).

MLL5 Down-regulated in poor prognosis AML (143).

MTA1 Over-expressed in OSCC, ESCC, early NSCLC, HCC, osteosarcoma, and colorectal, pancreatic, 
endometrial, ovarian, prostate, breast and gastric cancers. It is one of the most commonly over-expressed 
genes in human tumours (144).

MTA2 Over-expressed in NSCLC (145), aggressive HCC (146) and epithelial ovarian cancer (147).

MUM1 Over-expressed in aggressive PCLBCL (148) and CLL (149), DLBCL and HL (150).

NCOA3 Over-expressed in HCC, breast (151), urothelial carcinoma of the bladder (152), NSCLC (153) and 
prostate tumours (154).
Amplified in breast cancer (155).
Fusion partner of KAT6A in AML (156).

PCGF2 Over-expressed in aggressive medulloblastoma (157).
Down-regulated in breast tumours (158) and high-grade prostate cancer (159).

PHC1 Over-expressed in ALL (36).

PHF8 Over-expressed in prostate cancer (122).

PHF19 Over-expressed in colon, skin, lung, rectal, cervical, uterine and hepatic tumours (36).

PRDM2 Mutated in endometrial, gastrointestinal (160) and colon tumours with MSI (161), melanoma (162).
Over-expressed in ALL (163).
Down-regulated in ESCC (164), neuroblastoma (165), HCC (166), epithelial ovarian carcinoma (167), 
thyroid carcinoma (168) and AML (163).
Deleted in parathyroid tumours (169).

RBBP4 Over-expressed in HPV-positive oropharyngeal tumours (170).
Down-regulated in mucoepidermoid carcinoma (171).

RBBP5 Amplified in glioblastomas (172).

RBBP7 Over-expressed in NSCLC (173) and breast tumours (174).

RING1 Over-expressed in prostate tumours (37).

RSF1 Over-expressed in NSCLC (175), urinary bladder (176), colon (177), gallbladder (178), nasopharyngeal 
(179) and ovarian aggressive carcinomas (180).
Amplified in aggressive ovarian carcinoma (181).

SET Mutated in AML (CGC).
Over-expressed in colorectal adenocarcinoma (182) and paediatric B-ALL and T-ALL (183).

SET8 Over-expressed in aggressive breast tumours (184).

SETDB2 Deleted in CLL (185).

SIRT1 Over-expressed in leukaemia, prostate, skin and colon cancers (186)
Down-regulated in breast tumours and HCC (187).

SIRT2 Down-regulated in gliomas (188).

SIRT3 Down-regulated in HCC (189).

SIRT6 Down-regulated in pancreas and colorectal cancer (190).
Deleted in colorectal cancer (190).

SIRT7 Over-expressed in breast (191) and thyroid carcinoma (192).

SMARCB1 Mutated in malignant rhabdoid tumours (CGC).

SMARCC1 Over-expressed in prostate cancer (193) and precancerous cervical lesions (194).
High expression correlates with good prognosis in colorectal cancer (195).

SMARCD1 Mutated in breast tumours (196).

SMARCD3 Over-expressed in advanced neuroblastoma (197).

SMARCE1 Over-expressed in aggressive endometrial carcinoma (198).

SMYD2 Over-expressed in ESCC (199).

SMYD3 Over-expressed in colorectal cancer (200).

SUZ12 Mutated in endometrial stromal tumours (CGC).
Over-expressed in breast, colon, liver (36) and ovarian tumours (201).



Amplified in MCL (202).

TBL1XR1 Over-expressed in SCC (203).
Deleted in ALL (204) and PCNSL (205).

TET1 Mutated in T-ALL (206).
Down-regulated in prostate and breast tumours (207).

TFPT Mutated in pre-B ALL (CGC).

TRIM28 Over-expressed in colorectal tumours (208), gastric cancer cell lines (209), NSCLC and breast (210). 
Over-expression predicts better survival in early lung tumours (210).
High expression indicates good prognosis in gastric cancer (209).

YY1 Over-expressed in prostate, colon, ovary, breast, bone, liver, lung, bladder, cervix, skin and blood 
(DLBCL, AML, CML, ALL, HL, BL, MCL, CLL and FL) cancers (211).
Down-regulated in melanomas, paediatric osteosarcomas and urothelial carcinomas (211).
There are contradictory results on the prognostic significance of YY1 in cancer (211).



Table S3. Mutually exclusivity test for mutations in genes coding proteins that act in the same complex.

Protein 
complex

Site Gene 1 Gene 2 P value Fisher Test

SWISNF Bladder ARID2 ARID1A 0.02

ISWI Bladder BAZ2A BPTF 0.03

NURDMI2 Bladder CHD3 CHD4 P < 10-16

SWISNF Breast ARID2 ARID1A 0.01

SWISNF Breast SMARCA2 ARID1A 0.01

SWISNF Breast SMARCA4 ARID1A P < 10-16

ISWI Breast BAZ2A BPTF 1.08*10-5

NURDMI2 Breast CHD3 CHD4 1.13*10-6

PRC1 Breast BAP1 PHC3 P < 10-16

SWISNF Head & Neck ARID2 SMARCA4 0.05

NURDMI2 Head & Neck CHD3 CHD4 1.98*10-5

PRC1 Head & Neck BAP1 PHC3 0.01

SWISNF Lung SMARCA2 SMARCA4 0.04

SWISNF Lung SMARCA2 ARID1A 0.04

ISWI Lung BAZ2A BPTF P < 10-16

NURDMI2 Lung CHD3 CHD4 8.35*10-9

PRC1 Lung BAP1 PHC3 0

SWISNF Ovary ARID2 SMARCA4 0.05

SWISNF Uteri PBRM1 ARID1A 0.02

SWISNF Uteri SMARCA4 ARID1A 0

ISWI Uteri BAZ2A BPTF 0

NURDMI2 Uteri CHD3 CHD4 5.29*10-8



Table S4. Gene regulatory modules collected for the analysis.

Group Name Cell type
Nº of 
genes

Source

EP300
EP300 ES ES 1191 Lister et al. 2009 (212)

EP300 CD4 CD4 3792 Wang et al. 2009 (213)

Activating 
histone 
marks

H3K4me3 ES ES 12312 ENCODE (214)

H3K4me3 CD4 CD4 11423 Barski et al. 2007 (215)

H3K4me3 gm12878 gm12878 11771 ENCODE (214)

H3K9ac ES ES 10489 ENCODE (214)

H3K9ac CD4 CD4 6906 Wang et al. 2009 (213)

H3K9ac gm12878 gm12878 9918 ENCODE (214)

Repressive 
histone 
marks

H3K27me3 ES ES 6665 ENCODE (214)

H3K27me3 CD4 CD4 5207 Wang et al. 2009 (213)

H3K27me3 gm12878 gm12878 6099 ENCODE (214)

Replication 
Timing

Late RT ES ES 918 Hansen et al. 2010 (216)

Late RT lymphoid lymphoid 260 Hansen et al. 2010 (216)
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